Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

نویسندگان

  • John Canning
  • George Huyang
  • Miles Ma
  • Alison Beavis
  • David Bishop
  • Kevin Cook
  • Andrew McDonagh
  • Dongqi Shi
  • Gang-Ding Peng
  • Maxwell J. Crossley
چکیده

Percolation diffusion into long (11.5 cm) self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS). Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm²∙s-¹) of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP) observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10-4 nm²∙s-1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Desulfurization Performance of Rhodococcus erythropolis IGTS8 by Assembling Spherical Mesoporous Silica Nanosorbents on the Surface of the Bacterial Cells

MCM-41 mesoporous silica is synthesized based on a self assembly method, using a quaternary ammonium template, CTAB for the adsorption of sulfur compounds from model oil (1.0 mmol/l DBT in dodecane solution). Then the adsorption capability of MCM-41 assembled on the surface of bacterium Rhodococcus erythropolis IGTS8 is examined regarding the improvement of the biodesulfurization process of...

متن کامل

Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage

Mesoporous silica nanoparticles (MSNs) containing vinyl-, propyl-, isobutyl- and phenyl functionalized monolayers were reported. These functionalized MSNs were prepared via molecular self-assembly of organosilanes on the mesoporous supports. The relative surface coverage of the organic monolayers can reach up to 100% (about 5.06 silanes/nm.

متن کامل

Self-Assembly of Ultrabright Fluorescent Silica ParticlesThis work was supported by the US Army Research Office (grant W911NF-05-1-0339)

Fluorescent particles have broad applications in tagging, tracing, and labeling. Fluorescence is typically generated through incorporation of either inorganic or organic fluorescent dyes into the particle s material. While inorganic dyes are typically more stable, their number and compatibility is rather restricted. The large variety of organic dyes makes them attractive for creating fluorescen...

متن کامل

Ultrabright fluorescent mesoporous silica particles

Recent self-assembly of ultra-bright fluorescent colloidal mesoporous (nanoporous) silica particles is highlighted. The particles can be up to two others of magnitude brighter than polymeric particles of comparable size assembled with quantum dots. Comparing with the maximum fluorescence of free dye in the same volume, the particles can show fluorescence which is higher by more than three order...

متن کامل

Tuning single-molecule dynamics in functionalized mesoporous silica.

Mesoporous silica materials are promising host structures for diverse applications in nanoscience. Many applications can profit significantly from the ability to influence guest dynamics in the host matrix. To this end, we introduce covalently attached organic functionalization into the walls of mesoporous silica networks. Using single-molecule fluorescence microscopy, we study the diffusion be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014